Sistemas de Monitoreo de Salud Estructural de Estructuras Civiles: una revisión bibliográfica.

Autores/as

DOI:

https://doi.org/10.56048/MQR20225.6.3.2022.1641-1667

Palabras clave:

SHM, monitoreo, salud estructural, puente, edificio, túnel.

Resumen

En la actualidad el monitoreo de salud estructural (SHM) es considerado como un campo de investigación emergente, este permite identificar el estado de salud de una estructura a través del monitoreo del comportamiento estructural, el sistema identifica defectos y daños de una estructura de manera temprana, sin importar que la estructura se encuentre en etapa de construcción o funcionamiento. SHM ha sido aplicado en múltiples estructuras a nivel mundial, desde hace muchas décadas, lo que ha permitido la investigación y el desarrollo de tecnologías eficientes y accesibles. Los resultados obtenidos con la aplicación de SHM han demostrado que es una herramienta que permite una operación segura y una administración eficiente de la estructura, ya que al tener un diagnóstico temprano del estado de salud es posible enfocar los esfuerzos de mantenimiento en los defectos y daños identificados antes de que estos sean visibles a los métodos convencionales, optimizando de esta manera el uso de recursos utilizados en el mantenimiento y potenciación de la infraestructura. Las principales aplicaciones se las ha realizado en estructuras importantes donde no es económicamente viable su reemplazo, sin embargo, su aplicación también es posible en estructuras pequeñas.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

    Cited

    DOI: 10.56048DOI

Citas

AlHamaydeh, M., & Aswad, N. G. (2022). Structural Health Monitoring Techniques and Technologies for Large-Scale Structures: Challenges, Limitations, and Recommendations. Practice Periodical on Structural Design and Construction, 27(3), 03122004. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000703

Brownjohn, J. M. W. (2007). Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 589–622. https://doi.org/10.1098/rsta.2006.1925

Caicedo, J. M. (2011). Practical guidelines for the natural excitation technique (NExT) and the eigensystem realization algorithm (ERA) for modal identification using ambient vibration. Experimental Techniques, 35(4), 52–58. https://doi.org/10.1111/J.1747-1567.2010.00643.X

Cárdenas, E. M., & Medina, L. U. (2021). Non-Parametric Operational Modal Analysis Methods in Frequency Domain: A Systematic Review. International Journal of Engineering and Technology Innovation, 11(1), 34–44. https://doi.org/10.46604/IJETI.2021.6126

Carder, D. S., Carder, & S., D. (1937). Observed vibrations of bridges*. BuSSA, 27(4), 267–303. https://doi.org/10.1785/BSSA0270040267

Conservation, D. (2022). California Strong Motion Instrumentation Program. https://www.conservation.ca.gov/cgs/smip

Coppolino, R. N., & Rubin, S. (1980). Detectability Of Structural Failures In Offshore Platforms By Ambient Vibration Monitoring. Proceedings of the Annual Offshore Technology Conference, 1980-May, 101–110. https://doi.org/10.4043/3865-MS

Costa, B. J. A., Magalhães, F., Cunha, Á., & Figueiras, J. (2013). Rehabilitation assessment of a centenary steel bridge based on modal analysis. Engineering Structures, 56, 260–272. https://doi.org/10.1016/j.engstruct.2013.05.010

Das, S., & Saha, P. (2018). A review of some advanced sensors used for health diagnosis of civil engineering structures. Measurement, 129, 68–90. https://doi.org/10.1016/j.measurement.2018.07.008

Farrar, C. R., & Worden, K. (2006). An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 303–315. https://doi.org/10.1098/RSTA.2006.1928

Farrar, C. R., & Worden, K. (2012). Structural Health Monitoring. In Structural Health Monitoring: A Machine Learning Perspective. Wiley. https://doi.org/10.1002/9781118443118

Felipe, A., & Mejía, R. V. (2010). Estado del arte en monitorización de salud estructural: Un enfoque basado en agentes inteligentes. In Ciencia e Ingeniería Neogranadina (Vol. 20, Issue 1). Universidad Militar Nueva Granada. http://www.scielo.org.co/pdf/cein/v20n1/v20n1a08.pdf

Gómez, J., Casas, J. R., & Villalba, S. (2021). Strain-monitoring of a concrete tunnel lining with distributed optical fiber sensors. International Conference on Structural Health Monitoring of Intelligent Infrastructure: Transferring Research into Practice, SHMII, 2021-June, 879–886.

Han, H., Wang, J., Meng, X., & Liu, H. (2016). Analysis of the dynamic response of a long span bridge using GPS/accelerometer/anemometer under typhoon loading. Engineering Structures, 122, 238–250. https://doi.org/10.1016/J.ENGSTRUCT.2016.04.041

He, Y., Li, Q., Zhu, H., Han, X., He, Y., & Li, X. (2018). Monitoring of structural modal parameters and dynamic responses of a 600m-high skyscraper during a typhoon. The Structural Design of Tall and Special Buildings, 27(6), e1456. https://doi.org/10.1002/TAL.1456

Herrasti, Z., Val, I., Gabilondo, I., Berganzo, J., Arriola, A., & Martínez, F. (2016). Wireless sensor nodes for generic signal conditioning: Application to Structural Health Monitoring of wind turbines. Sensors and Actuators A: Physical, 247, 604–613. https://doi.org/10.1016/J.SNA.2016.06.027

Hou, S., Zeng, C., Zhang, H., & Ou, J. (2018). Monitoring interstory drift in buildings under seismic loading using MEMS inclinometers. Construction and Building Materials, 185, 453–467. https://doi.org/10.1016/J.CONBUILDMAT.2018.07.087

Hudson, D. E. (1977). Dynamic Tests of Full-Scale Structures. Journal of the Engineering Mechanics Division, 103(6), 1141–1157. https://doi.org/10.1061/JMCEA3.0002302

Ibrahim, S. R. (1999). Fundamentals of Time Domain Modal Identification. Modal Analysis and Testing, 241–250. https://doi.org/10.1007/978-94-011-4503-9_11

ICOLD. (1994). Ageing of dams and appurtenant works: review and recommendations. CIGB.

Ikuma, M. (2005). Maintenance of the undersea section of the Seikan Tunnel. Tunnelling and Underground Space Technology, 20(2), 143–149. https://doi.org/10.1016/J.TUST.2003.10.001

Im, S. B., Hurlebaus, S., & Kang, Y. J. (2013). Summary Review of GPS Technology for Structural Health Monitoring. Journal of Structural Engineering, 139(10), 1653–1664. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000475

Kenley, R. M., & Dodds, C. J. (1980). West Sole WE Platform: Detection Of Damage By Structural Response Measurements. Proceedings of the Annual Offshore Technology Conference, 1980-May, 111–118. https://doi.org/10.4043/3866-MS

Klun, M., & Kryžanowski, A. (2022). Dynamic monitoring as a part of structural health monitoring of dams. Archives of Civil Engineering, 68(No 1), 569–578. https://doi.org/10.24425/ace.2022.140186

Ko, J. M., & Ni, Y. Q. (2005). Technology developments in structural health monitoring of large-scale bridges. Engineering Structures, 27(12), 1715–1725. https://doi.org/10.1016/J.ENGSTRUCT.2005.02.021

Kourehli, S. S. (2017). Plate-like structures damage detection based on static response and static strain energy using gaussian process regression (GPR). Https://Doi.Org/10.1080/17415977.2017.1386188, 26(8), 1198–1213. https://doi.org/10.1080/17415977.2017.1386188

Lammering, R. (2013). Special issue ‘“SHM—structural health monitoring.”’ CEAS Aeronautical Journal, 4(1), 1–1. https://doi.org/10.1007/s13272-013-0067-y

Li, Q., He, Y., Wang, H., Zhou, K., & Yan, B. (2017). Monitoring and time-dependent analysis of vertical deformations of the tallest building in China. Structural Control and Health Monitoring, 24(7), e1936. https://doi.org/10.1002/STC.1936

Li, Q., He, Y., Zhou, K., Han, X., He, Y., & Shu, Z. (2018). Structural health monitoring for a 600 m high skyscraper. Structural Design of Tall and Special Buildings, 27(12). https://doi.org/10.1002/TAL.1490

Liu, D., Tang, Z., Bao, Y., & Li, H. (2021). Machine-learning-based methods for output-only structural modal identification. Structural Control and Health Monitoring, 28(12). https://doi.org/10.1002/STC.2843

Liu, F., Li, H., Li, W., & Wang, B. (2014). Experimental study of improved modal strain energy method for damage localisation in jacket-type offshore wind turbines. Renewable Energy, 72, 174–181. https://doi.org/10.1016/J.RENENE.2014.07.007

Liu, F., Wu, J., Gu, F., & Ball, A. D. (2019). An Introduction of a Robust OMA Method: CoS-SSI and Its Performance Evaluation through the Simulation and a Case Study. Shock and Vibration, 2019. https://doi.org/10.1155/2019/6581516

Naeim, F. (2013). Real-Time Damage Detection and Performance Evaluation for Buildings. In Earthquakes and Health Monitoring of Civil Structures (pp. 167–196). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5182-8_7

Narayanan, A., & Subramaniam, K. V. L. (2017). Damage assessment in concrete structures using piezoelectric based sensors. Revista ALCONPAT, 7(1), 25–35. https://doi.org/10.21041/RA.V7I1.173

Pallot, J., Ekanayake, C., Ma, H., & Naranpanawe, L. (2022). Application of operational modal analysis to investigate transformer vibration patterns. IET Generation, Transmission & Distribution, 16(10), 1964–1973. https://doi.org/10.1049/GTD2.12406

Peeters, B., & Roeck, G. de. (2001). Stochastic system identification for operational modal analysis: A Review. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 123(4), 659–667. https://doi.org/10.1115/1.1410370

Qian, F., Yuan, T., Zhi-Wei, B., -, A., Li, P., Qu, D., Zhang, L., Xiao-Hua, M., Hai-Xia, G., Yan-Rong, C., Tong, J., Chen, X., & Yu, H. (2022). Research on structural health monitoring method based on the inertial inclination sensor array. Journal of Physics: Conference Series, 2264(1), 012003. https://doi.org/10.1088/1742-6596/2264/1/012003

Ran, L., Ye, X. W., & Zhu, H. H. (2011). Long-Term Monitoring and Safety Evaluation of A Metro Station During Deep Excavation. Procedia Engineering, 14, 785–792. https://doi.org/10.1016/J.PROENG.2011.07.099

Ribeiro, R. R., & Lameiras, R. de M. (2019). Evaluation of low-cost MEMS accelerometers for SHM: frequency and damping identification of civil structures. Latin American Journal of Solids and Structures, 16(7 CILAMCE 2018), 203. https://doi.org/10.1590/1679-78255308

Salvaneschi, P., Cadei, M., & Lazzari, M. (1996). Applying AI to Structural Safety Monitoring and Evaluation. IEEE Intelligent Systems, 11(04), 24–34. https://doi.org/10.1109/64.511774

Shokravi, H., Shokravi, H., Bakhary, N., Rahimian Koloor, S. S., & Petrů, M. (2020). Health monitoring of civil infrastructures by subspace system identification method: An overview. Applied Sciences (Switzerland), 10(8). https://doi.org/10.3390/APP10082786

Svendsen, B. T., Petersen, Ø. W., Frøseth, G. T., & Rønnquist, A. (2021). Improved finite element model updating of a full-scale steel bridge using sensitivity analysis. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2021.1944227

Ubertini, F., Gentile, C., & Materazzi, A. L. (2013). Automated modal identification in operational conditions and its application to bridges. Engineering Structures, 46, 264–278. https://doi.org/10.1016/j.engstruct.2012.07.031

University of Washington Structural Research Laboratory. (1949). Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge : a report of an investigation conducted by the Structural Research Laboratory, University of Washington, under the direction of the Washington Toll Bridge Aut (1949-54. Seattle : University of Washington Press, Ed.). University of Washington Press,.

Warsi, Z. H., Irshad, S. M., Khan, F., Shahbaz, M. A., Junaid, M., & Amin, S. U. (2019). Sensors for structural health monitoring: A review. 2019 2nd International Conference on Latest Trends in Electrical Engineering and Computing Technologies, INTELLECT 2019. https://doi.org/10.1109/INTELLECT47034.2019.8955453

Xu, N., Tang, C., Li, H., & Liang, Z. (2012). Application of Microseismic Monitoring Technique in Hydroelectric Projects. Hydropower - Practice and Application. https://doi.org/10.5772/31625

Yang, Y., & Nagarajaiah, S. (2013). Blind modal identification of output-only structures in time-domain based on complexity pursuit. Earthquake Engineering & Structural Dynamics, 42(13), 1885–1905. https://doi.org/10.1002/EQE.2302

Ye, X., Huang, P., Pan, C., & Mei, L. (2021). Innovative stabilization diagram for automated structural modal identification based on ERA and hierarchical cluster analysis. Journal of Civil Structural Health Monitoring 2021 11:5, 11(5), 1355–1373. https://doi.org/10.1007/S13349-021-00514-8

Zhang, G., Moutinho, C., & Magalhães, F. (2022). Continuous dynamic monitoring of a large-span arch bridge with wireless nodes based on MEMS accelerometers. Structural Control and Health Monitoring, 29(7), e2963. https://doi.org/10.1002/STC.2963

Zhuo, Y., Han, Z., Duan, J., Jin, H., & Fu, H. (2021). Estimation of vibration stability in milling of thin-walled parts using operational modal analysis. International Journal of Advanced Manufacturing Technology, 115(4), 1259–1275. https://doi.org/10.1007/S00170-021-07051-

Publicado

2022-09-15

Cómo citar

Bacuilima-Illescas, M. A., & Barbecho-Chuisaca, J. (2022). Sistemas de Monitoreo de Salud Estructural de Estructuras Civiles: una revisión bibliográfica. MQRInvestigar, 6(3), 1641–1667. https://doi.org/10.56048/MQR20225.6.3.2022.1641-1667

Artículos similares

También puede {advancedSearchLink} para este artículo.