Tasa de filtración glomerular y cistatina c como marcadores de daño renal: causa y estadificación en población mundial

Autores/as

DOI:

https://doi.org/10.56048/MQR20225.8.3.2024.2250-2271

Palabras clave:

Ecuaciones; enfermedad renal; riñón

Resumen

La tasa de filtración glomerular y la cistatina C son marcadores importantes que se utilizaron para evaluar la función y detectar daño renal, generalmente causado por diversos factores como hipertensión y diabetes. El estudio tuvo como objetivo demostrar la tasa de filtración glomerular y cistatina C como marcadores de daño renal: causa y estadificación en población mundial, se empleó una metodología documental, exploratoria de nivel explicativo. Entre los resultados se destacó que el daño renal podía ser causado por varios factores, como edad y el género, la presión arterial elevada, diabetes mellitus, hemorragias y dilataciones; la modificación de la dieta en enfermedades renales y la colaboración en epidemiología de la enfermedad renal crónica, la ecuación de Schwartz y las ecuaciones de Cockcroft-Gault y Jelliffe modificada fueron las ecuaciones más utilizadas para medir la tasa de filtración glomerular; los niveles normales de cistatina C oscilaron entre 0.6 y 1.3, sin embargo, estos niveles podían elevarse hasta 4 mg/L ante algún acontecimiento patológico; la mayoría de los participantes mostraron tener una tasa de filtración glomerular normal o aumentada, otra minoría mostró estar en la G2 tasa de filtración glomerular y una proporción más pequeña mostró tener tasa de filtración glomerular G4 y G5. Se concluyó que las condiciones crónicas como la diabetes y la hipertensión emergieron como contribuyentes importantes para la causa de daño renal; la evaluación de la tasa de filtración glomerular a través de varias ecuaciones ofreció una herramienta valiosa para comprender la función renal en la diversa población mundial.

 

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

    Cited

    DOI: 10.56048DOI

Biografía del autor/a

Jazmín Elena Castro-Jalca, UNIVERSIDAD ESTATAL DEL SUR DE MANABÍ

Docente tutor, Facultad de ciencias de la salud

Erika Johanna Chiquito-Suárez, UNIVERSIDAD ESTATAL DEL SUR DE MANABÍ

Mirian Monserrate Mero-Castro, UNIVERSIDAD ESTATAL DEL SUR DE MANABÍ

Citas

Almeida, W. L. da C., Barreto, S. M., Vidigal, P. G., & Mill, J. G. (2023). Validation of equations to estimate kidney function with and without adjustment by race/color in Brazilian adults (ELSA-Brazil). Revista Brasileira de Epidemiologia, 26, e230057. https://doi.org/10.1590/1980-549720230057

Awan, S., Dars, S., Junejo, S., Rani, S., & Sikandar, R. (2020). Outcome and Causes of Acute Renal Failure in Women during Peripartum Period. Journal of Liaquat University of Medical & Health Sciences, 19(01), 20–23. https://doi.org/10.22442/JLUMHS

Benoit, S. W., Ciccia, E. A., & Devarajan, P. (2020). Cystatin C as a biomarker of chronic kidney disease: latest developments. Expert Review of Molecular Diagnostics, 20(10), 1019. https://doi.org/10.1080/14737159.2020.1768849

Caviedes-Cleves, M. A., Arias, L. F., & Ospina-Ospina, S. (2022). Hallazgos histopatológicos en biopsia renal de pacientes con COVID-19 y compromiso renal. Medicina y Laboratorio, 26(3), 261–271. https://doi.org/10.36384/01232576.589

Cha, R. H., Lee, H., Lee, J. P., Kim, Y. S., Kim, S. G., & Sahutoglu, T. (2020). The influence of blood pressure patterns on renal outcomes in patients with chronic kidney disease: The long-term follow up result of the APrODiTe-2 study. Medicine, 99(8). https://doi.org/10.1097/MD.0000000000019209

Chen, D. C., Shlipak, M. G., Scherzer, R., Bauer, S. R., Potok, O. A., Rifkin, D. E., Ix, J. H., Muiru, A. N., Hsu, C. Y., & Estrella, M. M. (2022). Association of Intraindividual Difference in Estimated Glomerular Filtration Rate by Creatinine vs Cystatin C and End-stage Kidney Disease and Mortality. JAMA Network Open, 5(2), e2148940–e2148940. https://doi.org/10.1001/JAMANETWORKOPEN.2021.48940

Chen, Z., Zhang, J., Feng, J., Zhou, G., Jin, X., & Pan, J. (2021). Higher serum level of Cystatin C: An additional risk factor of CAD. Medicine, 100(2), E24269. https://doi.org/10.1097/MD.0000000000024269

Chi, X. H., Li, G. P., Wang, Q. S., Qi, Y. S., Huang, K., Zhang, Q., & Xue, Y. M. (2017). CKD-EPI creatinine-cystatin C glomerular filtration rate estimation equation seems more suitable for Chinese patients with chronic kidney disease than other equations. BMC Nephrology, 18(1), 1–7. https://doi.org/10.1186/S12882-017-0637-Z/TABLES/5

De la Torre-Cisneros, K., Carrasco-Tenezaca, F., Barrera-Guarderas, F., Medina-Escudero, M., & Venegas-Baca, O. (2022). Time to develop chronic kidney disease in an Ecuadorian Type 2 Diabetes Mellitus cohort: Survival analysis in primary care. Journal of Diabetes and Its Complications, 36(2). https://doi.org/10.1016/J.JDIACOMP.2021.108108

Delanaye, P., Cavalier, E., Morel, J., Mehdi, M., Maillard, N., Claisse, G., Lambermont, B., Dubois, B. E., Damas, P., Krzesinski, J. M., Lautrette, A., & Mariat, C. (2014). Detection of decreased glomerular filtration rate in intensive care units: Serum cystatin C versus serum creatinine. BMC Nephrology, 15(1), 1–6. https://doi.org/10.1186/1471-2369-15-9/TABLES/3

Delanaye, P., Cavalier, E., Pottel, H., & Stehlé, T. (2023). New and old GFR equations: a European perspective. Clinical Kidney Journal, 16(9), 1375–1383. https://doi.org/10.1093/CKJ/SFAD039

Edinga-Melenge, B. E., Yakam, A. T., Nansseu, J. R., Bilong, C., Belinga, S., Minkala, E., Noudjeu, P. A., Ondhoua, M., Kokola, S. W., Ama Moor, V. J., & Ashuntantang, G. (2019). Reference intervals for serum cystatin C and serum creatinine in an adult sub-Saharan African population. BMC Clinical Pathology, 19(1). https://doi.org/10.1186/S12907-019-0086-7

Erlandsen, E. J., & Randers, E. (2018a). Reference intervals for plasma cystatin C and plasma creatinine in adults using methods traceable to international calibrators and reference methods. Journal of Clinical Laboratory Analysis, 32(6). https://doi.org/10.1002/JCLA.22433

Erlandsen, E. J., & Randers, E. (2018b). Reference intervals for plasma cystatin C and plasma creatinine in adults using methods traceable to international calibrators and reference methods. Journal of Clinical Laboratory Analysis, 32(6). https://doi.org/10.1002/JCLA.22433

Farkash, E. A., Wilson, A. M., & Jentzen, J. M. (2020). Ultrastructural Evidence for Direct Renal Infection with SARS-CoV-2. Journal of the American Society of Nephrology : JASN, 31(8), 1683. https://doi.org/10.1681/ASN.2020040432

Fiseha, T., Mengesha, T., Girma, R., Kebede, E., & Gebreweld, A. (2019). Estimation of renal function in adult outpatients with normal serum creatinine. BMC Research Notes, 12(1). https://doi.org/10.1186/S13104-019-4487-6

Gao, J.-Q., Zhao, F.-G., Huang, J.-M., Shao, F.-Q., & Xie, P. (2021). Comparative performance of FAS equation and Asian modified CKD-EPI in the determination of GFR in Chinese patients with CKD with the 99mTc-DTPA plasma clearance as the reference method. Nefrología, 41(1), 27–33. https://doi.org/10.1016/J.NEFRO.2020.08.006

Giavarina, D., Husain-Syed, F., & Ronco, C. (2021). Clinical Implications of the New Equation to Estimate Glomerular Filtration Rate. Nephron, 145(5), 508–512. https://doi.org/10.1159/000516638

Gottlieb, E. R., Estiverne, C., Tolan, N. V., Melanson, S. E. F., & Mendu, M. L. (2023a). Estimated GFR With Cystatin C and Creatinine in Clinical Practice: A Retrospective Cohort Study. Kidney Medicine, 5(3), 100600. https://doi.org/10.1016/J.XKME.2023.100600

Gottlieb, E. R., Estiverne, C., Tolan, N. V., Melanson, S. E. F., & Mendu, M. L. (2023b). Estimated GFR With Cystatin C and Creatinine in Clinical Practice: A Retrospective Cohort Study. Kidney Medicine, 5(3), 100600. https://doi.org/10.1016/J.XKME.2023.100600

Groot, N., Shaikhani, D., Teng, Y. K. O., de Leeuw, K., Bijl, M., Dolhain, R. J. E. M., Zirkzee, E., Fritsch-Stork, R., Bultink, I. E. M., & Kamphuis, S. (2019). Long-Term Clinical Outcomes in a Cohort of Adults With Childhood-Onset Systemic Lupus Erythematosus. Arthritis and Rheumatology, 71(2), 290–301. https://doi.org/10.1002/ART.40697/ABSTRACT

Hussain, M., Khalique, A., Maheshwari, P. K., Qamar, U., & Shehzad, A. (2021). Outcomes of transurethral resection of prostate in patients with and without renal failure secondary to an enlarged prostate. Journal of the College of Physicians and Surgeons Pakistan, 31(10), 1247–1249. https://doi.org/10.29271/JCPSP.2021.10.1247

Ibarra Rodríguez, M. R., Antón Gamero, M., Parente Hernández, A., Wiesner Torres, S. R., Vargas Cruz, V., & Paredes Esteban, R. M. (2022). Malformaciones congénitas del tracto urinario(CAKUT): evolución a enfermedad renal crónica. Cir. Pediátr, 172–179. https://doi.org/10.54847/CP.2022.04.0

Jones, M., Denieffe, S., Griffin, C., Tinago, W., & Fitzgibbon, M. C. (2017). Evaluation of cystatin C in malignancy and comparability of estimates of GFR in oncology patients. Practical Laboratory Medicine, 8, 95. https://doi.org/10.1016/J.PLABM.2017.05.005

Kondhalkar, A. A., Jha, R. K., Ambad, R. S., & Jha, R. K. (2021). Level Of Creatinine And Cystatatin C In Different Stages Of Kidney Failure. European Journal of Molecular and Clinical Medicine, 8(1), 320–327. https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=25158260&v=2.1&it=r&id=GALE%7CA698747665&sid=googleScholar&linkaccess=fulltext

Lee, H., Kwon, S. H., Jeon, J. S., Noh, H., Han, D. C., & Kim, H. (2022). Association between blood pressure and the risk of chronic kidney disease in treatment-naïve hypertensive patients. Kidney Research and Clinical Practice, 41(1), 31. https://doi.org/10.23876/J.KRCP.21.099

Lee, H. S., Bae, G. E., Lee, J. E., & Park, H. D. (2023). Effect of Two Cystatin C Reagents and Four Equations on Glomerular Filtration Rate Estimations After Standardization. Annals of Laboratory Medicine, 43(6), 565–573. https://doi.org/10.3343/ALM.2023.43.6.565

Li, Y., Yang, S., Peng, D., Zhu, H. M., Li, B. Y., Yang, X., Sun, X. L., & Zhang, M. (2020). Predictive value of serum cystatin C for risk of mortality in severe and critically ill patients with COVID-19. World Journal of Clinical Cases, 8(20), 4726. https://doi.org/10.12998/WJCC.V8.I20.4726

Luis-Lima, S., Escamilla-Cabrera, B., Negrín-Mena, N., Estupiñán, S., Delgado-Mallén, P., Marrero-Miranda, D., González-Rinne, A., Miquel-Rodríguez, R., Cobo-Caso, M. Á., Hernández-Guerra, M., Oramas, J., Batista, N., Aldea-Perona, A., Jorge-Pérez, P., González-Alayón, C., Moreno-Sanfiel, M., González-Rodríguez, J. A., Henríquez, L., Alonso-Pescoso, R., … Porrini, E. (2019). Chronic kidney disease staging with cystatin C or creatinine-based formulas: flipping the coin. Nephrology, Dialysis, Transplantation : Official Publication of the European Dialysis and Transplant Association - European Renal Association, 34(2), 287–294. https://doi.org/10.1093/NDT/GFY086

Ma, X., Ren, X., Zhang, X., Wang, G., Liu, H., & Wang, L. (2024). Rutin ameliorate PFOA induced renal damage by reducing oxidative stress and improving lipid metabolism. The Journal of Nutritional Biochemistry, 123, 109501. https://doi.org/10.1016/J.JNUTBIO.2023.109501

Mahajan, A., Amelio, J., Gairy, K., Kaur, G., Levy, R. A., Roth, D., & Bass, D. (2020). Systemic lupus erythematosus, lupus nephritis and end-stage renal disease: a pragmatic review mapping disease severity and progression. Lupus, 29(9), 1011. https://doi.org/10.1177/0961203320932219

Major, R. W., Shepherd, D., & Brunskill, N. J. (2018). Reclassification of Chronic Kidney Disease Stage, Eligibility for Cystatin-C and Its Associated Costs in a UK Primary Care Cohort. Nephron, 139(1), 39–46. https://doi.org/10.1159/000487091

Mansour, A. E., Abdelmoniem, R. O., Elbadawy, A. M., & Ibrahim, W. M. (2023). The utility of estimation of glomerular filtration rate by serum cystatin C as a predictor of diabetic kidney disease in both type I and type II diabetic patients: a single center study. The Egyptian Journal of Internal Medicine 2023 35:1, 35(1), 1–9. https://doi.org/10.1186/S43162-023-00243-Y

Maranduca, M., Clim, A., & Constantin, A. (2023). Role of arterial hypertension and angiotensin II in chronic kidney disease (Review). Experimental and Therapeutic Medicine. https://www.spandidos-publications.com/10.3892/etm.2023.11852

Mekkawy, K. L., Chaudhry, Y. P., Rao, S. S., Raad, M., Amin, R. M., & Khanuja, H. S. (2023). Comparing five equations to calculate estimated glomerular filtration rate to predict acute kidney injury following total joint arthroplasty. Arthroplasty, 5(1), 1–6. https://doi.org/10.1186/S42836-022-00161-4/TABLES/3

Menezes, C., Costa, T., Brás, C., Sousa, P., Mendes, A., Amorim, R., Faria, M. S., Mota, C., Menezes, C., Costa, T., Brás, C., Sousa, P., Mendes, A., Amorim, R., Faria, M. S., & Mota, C. (2023). Estimating the Glomerular Filtration Rate in Pediatric Patients With Neurogenic Bladder: A Comparison Between Creatinine- and Cystatin C-Equations. Cureus, 15(7). https://doi.org/10.7759/CUREUS.42337

Mindikoglu, A. L., Opekun, A. R., Mitch, W. E., Magder, L. S., Christenson, R. H., Dowling, T. C., Weir, M. R., Seliger, S. L., Howell, C. D., Raufman, J. P., Rana, A., Goss, J. A., Khaderi, S. A., & Vierling, J. M. (2018). Cystatin C is a Gender-Neutral Glomerular Filtration Rate Biomarker in Patients with Cirrhosis. Digestive Diseases and Sciences, 63(3), 665. https://doi.org/10.1007/S10620-017-4897-Z

Mooney, J. F., Croal, B. L., Cassidy, S., Lee, V. W., Chow, C. K., Cuthbertson, B. H., & Hillis, G. S. (2019). Relative value of cystatin C and creatinine-based estimates of glomerular filtration rate in predicting long-term mortality after cardiac surgery: a cohort study. BMJ Open, 9(9). https://doi.org/10.1136/BMJOPEN-2019-029379

Nagel, G., Kurz, D., Peter, R. S., Rosenbohm, A., Koenig, W., Dupuis, L., Bäzner, H., Börtlein, A., Dempewolf, S., Schabet, M., Hecht, M., Kohler, A., Opherk, C., Naegele, A., Sommer, N., Lindner, A., Tumani, H., Ludolph, A. C., & Rothenbacher, D. (2023). Cystatin C based estimation of chronic kidney disease and amyotrophic lateral sclerosis in the ALS registry Swabia: associated risk and prognostic value. Scientific Reports 2023 13:1, 13(1), 1–8. https://doi.org/10.1038/s41598-023-46179-9

Nateghi Haredasht, F., Viaene, L., Vens, C., Callewaert, N., De Corte, W., & Pottel, H. (2022). Comparison between Cystatin C- and Creatinine-Based Estimated Glomerular Filtration Rate in the Follow-Up of Patients Recovering from a Stage-3 AKI in ICU. Journal of Clinical Medicine, 11(24). https://doi.org/10.3390/JCM11247264

Pastrana, M. A., Mejía-Escobar, C. K., Ramos-Ortega, A. E., Molina, A. M., Aguilar-Robleto, R. E., Sánchez-Sierra, L. E., & Mena-Corteguera, E. (2020). Prevalencia y Caracterización de Daño Renal en pacientes con Diabetes Mellitus tipo 2, Honduras. Revista Hispanoamericana de Ciencias de La Salud, 6(3), 89–98. https://doi.org/10.56239/RHCS.2020.63.432

Porto, J. R., Gomes, K. B., Fernandes, A. P., & Domingueti, C. P. (2017). Cystatin C: a promising biomarker to evaluate renal function. Revista Brasileira de Análises Clínicas, 49(3). https://doi.org/10.21877/2448-3877.201600446

Pottel, H., Delanaye, P., & Cavalier, E. (2024). Exploring Renal Function Assessment: Creatinine, Cystatin C, and Estimated Glomerular Filtration Rate Focused on the European Kidney Function Consortium Equation. Annals of Laboratory Medicine, 44(2), 135–143. https://doi.org/10.3343/ALM.2023.0237

Quiroga, B., & Díez, J. (2023). Estimation of glomerular filtration rate in cardiorenal patients: a step forward. Clinical Kidney Journal, 16(7), 1049–1055. https://doi.org/10.1093/CKJ/SFAD083

Ravani, P., Quinn, R., Fiocco, M., Liu, P., Al-Wahsh, H., Lam, N., Hemmelgarn, B. R., Manns, B. J., James, M. T., Joanette, Y., & Tonelli, M. (2020). Association of Age With Risk of Kidney Failure in Adults With Stage IV Chronic Kidney Disease in Canada. JAMA Network Open, 3(9), e2017150–e2017150. https://doi.org/10.1001/JAMANETWORKOPEN.2020.17150

Solis, M., Benavides, G., Vasconez, E., & Campoverde, A. (2020). Vista de Correlación de cistatina “C” y creatinina sérica frente al filtrado glomerular en pacientes con nefropatía diabética. Cambios, 19(1), 22–28. https://revistahcam.iess.gob.ec/index.php/cambios/article/view/338/313

Spencer, S., Desborough, R., & Bhandari, S. (2023). Should Cystatin C eGFR Become Routine Clinical Practice? Biomolecules 2023, Vol. 13, Page 1075, 13(7), 1075. https://doi.org/10.3390/BIOM13071075

Su, R., Goodman, R., Finup, J., Bhatia, V., Byrne, A., Farhat, W., & Cannon, S. (2022). PD02-04 VARIABILITY IN CYSTATIN C AND CREATININE BASED EQUATIONS FOR CHRONIC KIDNEY DISEASE STAGING IN ADULT SPINA BIFIDA PATIENTS. The Journal of Urology, 207(Supplement 5). https://doi.org/10.1097/JU.0000000000002517.04

Tavares, J., Santos, J., Silva, F., Oliveira, J., Malheiro, J., Campos, A., & Cabrita, A. (2020). Association between severe chronic kidney disease defined by cystatin-c and creatinine and clinical outcomes in an elderly population - an observational study. Brazilian Journal of Nephrology, 43(2), 165–172. https://doi.org/10.1590/2175-8239-JBN-2020-0092

Topf, J. M., & Inker, L. A. (2019). Measurement of glomerular filtration rate. Nephrology Secrets: Fourth Edition, 22–29. https://doi.org/10.1016/B978-0-323-47871-7.00012-5

Wei, L., Ye, X., Pei, X., Wu, J., & Zhao, W. (2014). Reference Intervals for Serum Cystatin C and Factors Influencing Cystatin C Levels Other than Renal Function in the Elderly. PLoS ONE, 9(1), 86066. https://doi.org/10.1371/JOURNAL.PONE.0086066

Werneburg, G. T., Hettel, D., Jeong, S., Nemunaitis, G., Taliercio, J. J., & Wood, H. M. (2023). Estimated Glomerular Filtration Rate Using Cystatin C is a More Sensitive Marker for Kidney Dysfunction in Nonweight-bearing Individuals. The Journal of Urology, 209(2), 391–398. https://doi.org/10.1097/JU.0000000000003070

Woo, K. S., Choi, J. L., Kim, B. R., Kim, J. E., & Han, J. Y. (2014). Clinical Usefulness of Serum Cystatin C as a Marker of Renal Function. Diabetes & Metabolism Journal, 38(4), 278–284. https://doi.org/10.4093/DMJ.2014.38.4.278

Wu, J., Liang, Y., Chen, R., Xu, L., Ou, Z., Liang, H., & Zhao, L. (2022). Association of plasma cystatin C with all-cause and cause-specific mortality among middle-aged and elderly individuals: a prospective community-based cohort study. Scientific Reports 2022 12:1, 12(1), 1–7. https://doi.org/10.1038/s41598-022-24722-4

Xie, J., & Jie, S. (2022). The value of cystatin C in evaluating the severity and prognosis of patients with severe fever with thrombocytopenia syndrome. BMC Infectious Diseases, 22(1). https://doi.org/10.1186/S12879-022-07320-7

Yee, M. E., Lane, P. A., Eckman, J. R., & Guasch, A. (2015). Estimation of Glomerular Filtration Rate (GFR) Using Serum Cystatin C and Creatinine Has Poor Precision and Accuracy in Adults with HbSS Sickle Cell Disease. Blood, 126(23), 987. https://doi.org/10.1182/BLOOD.V126.23.987.987

Ziegelasch, N., Vogel, M., Müller, E., Tremel, N., Jurkutat, A., Löffler, M., Terliesner, N., Thiery, J., Willenberg, A., Kiess, W., & Dittrich, K. (2019). Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage. Pediatric Nephrology (Berlin, Germany), 34(3), 449. https://doi.org/10.1007/S00467-018-4087-Z

Descargas

Publicado

2024-08-02

Cómo citar

Castro-Jalca, J. E., Chiquito-Suárez, E. J., & Mero-Castro, M. M. (2024). Tasa de filtración glomerular y cistatina c como marcadores de daño renal: causa y estadificación en población mundial. MQRInvestigar, 8(3), 2250–2271. https://doi.org/10.56048/MQR20225.8.3.2024.2250-2271

Artículos similares

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a

1 2 3 > >>